Packing problems of objects in science and in everyday life

Docent lecture by Dr. Martin Trulsson

Geometric packing problems (i.e. not considering weight and etc)

- Optimisation problem

Important for packaging (objects: pills, milk carton, cloths etc), storage and/or transport (in flights)

Bin packing problem:

- 1) Having a container
- 2) Pack a set (maximum) of objects into the container

Tangram

Infinite space (or periodic packing) Avoiding the voids (and overlaps)

3D

Regular (convex) polygons

Infinite number

Regular (convex) polyhedrons

Platonic solids 5 of them

Avoiding the voids

In two-dimensions there exits three regular tiling that are area-filling (Out of the infinite regular polygons)

Board games (also frequently used in video games)

Avoiding the voids

In two-dimensions there exits three regular tiling that are area-filling (Out of the infinite regular polygons)

Or just some inspiration to your kitchen or bathroom!

Tessellations

These periodic tilings without overlap or voids are called tessellation's

There exist three **regular tessellations** in 2D (above)

Semiregular (Archimedean) tessellations

Demiregular tessellations

Two or three polygons (share vertexes)

Other tilings (of non-regular but convex objects)

Triangle

Quadrilateral (four sides)

Pentagon

Hexagon

sides>6 only non-convex

Many other area-filling tilings with non-convex or not edge-matching polygons

Non-convex Convex but not edge-to-edge Convex Concave Star tilings

More periodic tilings

Archelogical museum of Seville, Spain

Skånetrafiken

Cairo street tiling

Two birds, M.C. Esher

Tomb of Moulay Ishmail, Meknes, Marrocco

Tillings in nature

Jackfruit texture

Honeycomb of bees

Hexagonal and Cubical Plant Cells

Tillings in nature continued (curvature)

Snake scales

Cone of spruce

Pineapple

A fly's eye

Aperiodic Tilings

Lacks translational symmetry but is self-similar

Robinson tiling (6 building blocks)
1971

Penrose tiling (2 building blocks)
1974

Open question:
Aperiodic tilings with only one
"connected" building block (Einstein)?

Other simple objects

The disc

Disc packings

That the hexagonal is the densest was proved by Gauss (1831, assuming regular lattices)
Fejes Tóth (1940) for all possible plan packings

Avoiding the voids in 3D (or tessellations in 3D)

Among the platonic solids only the cube turns out to be space-filling (i.e. no voids)

Rhombic dodecahedron

Truncated octahedron

Use two or more sizes:

Combinations of platonic solids may however fill the space

Regular octahedra and tetrahedra in a ratio of 1:2

Or more complex objects:

Esher's solid

But wait? Can I not pack the space with tetrahedrons?

Claimed by Aristotle!

Not the case!

But then: What is then the densest of tetrahedrons?

1970 Hoylman proved that the densest lattice packing was 36.73% ("Bravais lattice")
2006 Conway and Torquato found a non-Bravais lattice of tetrahedrons of rough 72%
2009 Chaikin showed experimentally that random dices of tetrahedrons pack denser 76%
2009 Glotzer showed by large-scale simulations that it could be even denser (via quasi-crystal) 85.03%
Later that same year Gravel et al. showed by a simple unit cell that one could reach 85.47%
"Competition" between different groups then continued and today densest is known to be 85.63%
Maybe there exists a denser packing???

OK, what about spheres?

Two kind of packings (based on hexagonal layers)

Hcp (hexagonal close packing): ABABAB.... Fcc (face centered cubic packing): ABCABC...

 $\phi \approx 74\%$

Is this the densest packing of spheres? Kepler says yes

First real (mathematical) proof by Hales 1998 (including non-periodic lattices etc). But reviewers were certain to 99%. 2014 (almost 20 years) Hales used computers to validate that he's proof was indeed correct.

OK, what about packing ellipsoids?

The densest know is (2004) $\phi \approx 77\%$

Denser than for spheres!

$$\alpha < 1/\sqrt{3}$$
 Oblate

$$\alpha > \sqrt{3}$$
Prolate

Even denser ones??

Crystal structures with atoms or molecules

Categories into 14 Bravais lattices (or 7 crystal systems)

Crystallography!! Number of Nobel prices related to this is huge (including Röntgen, Bragg and Quasicrystals)

Material science: mechanical, optical and other various properties

Aperiodic Tessellation in 3D

Conway, Penrose, Ammann (amateur)
"Mathematical puzzles"

1982 - Quasicrystals (Dan Shechtman, Nobel prize 2011)

Ho-Mg-Zn dodecahedral quasicrystal

Linus Pauling: "There is no such thing as quasicrystals, only quasi-scientists"

Related topic: Pilling spheres

Need of friction at least on the base plan

Tennis ball towers (without glue)

Sand and gravel (or stones)

Not as regular or with different shapes and sizes. How do they pack?

Random close packing (or jamming)

Assuming hard spheres with a slight poly-dispersity (different sizes) or with a slight asymmetric shape

 $\phi \approx 64\%$

Frictionless

How do I know it's a solid?

Short answer: It does not flowing (upon forcing) I.e. need finite yield stress/force (mechanical stable)

Gravity

Not good

$$Z=2$$

Good, even if marginally Very good (too much)?

$$Z=3$$

$$Z=4$$

For spheres the constrain is (3D):

$$Z_{\rm iso} = 2d$$

 $Z_{\rm iso} = 2d$ (6) Dense (lubricated)

$$Z_{\rm iso} = d + 1$$

 $Z_{\rm iso} = d + 1$ (4) Loose (frictional)

Packing "frictional" spheres

Very loose random packing by letting spheres settle in a viscous fluid

$$\phi \approx 0.56$$

Loose random packing by dropping or packed by hand

$$\phi \approx 0.59 - 0.60$$

Poured random packing

$$\phi \approx 0.61 - 0.62$$

Close random packing (by vibrations or tapping the jar)

$$\phi \approx 0.62 - 0.64$$

$$\phi_{\rm RCP} \approx 0.64$$

The trap

Jamming, friction, force chains and rattlers

Photo-elastic discs

Random close packing II

Adding instead asymmetry as for M&M's

 $\phi \approx 74\%$

Much denser than for RCP spheres

Packing in biological systems

Hierarchical packing of DNA into chromosomes

Packing genome in an efficient way

Schematic diagram of genome packaging in dsDNA viruses

Cell packings

Packing of bubbles/foams

Apollonian gasket

- 1. Draw a large circle
- 2. Put 3 circles within and touching the large one
- 3. Fill the gaps with the biggest circles and that are touching the other circles
- 4. Continue with 2

Forms a so called fractal structure

Why not start yourselves?

Download the app "Geyopp" and try to maximise the packing

Competition time! How many "geléhallon" are there in the jar?

Thank you!

Competition time! How many "geléhallon" are there in the jar?

